1.0x
SOFTWARE USER’S GUIDE
Credits

Spectral Machine: Xavier Amatriain (design and programming), Alessandro Saccoia (programming and additional effect design), Sophia Poirier (original framework code), Earl Vickers (design, some prototype code, etc.)

Beta Testers: Joakim Fahlstrom, Jeremy Lee, Elvar Aron, Andrew Lansley, Shaun Mettam, Matthew Large, Ed Parnell, James Monroe, Pete Martin, Ray Brunelle, others.
Contents

1 Introduction ... 1
 Welcome to Spectral Machine! 1
 Minimum System Requirements 2
 Precautions ... 2

2 Quick Start ... 3
 Installing Spectral Machine (Mac Version) 3
 Installing Spectral Machine (Windows Version) 4
 Authorizing Spectral Machine 5

3 Overview ... 6
 User Interface ... 6
 General Purpose and Monophonic Effects 7
 Spectral Machine Effect Controls 8
 Spectral Machine Global Controls 10

4 The Effects ... 12
 General Purpose Effects 12
 Monophonic Effects ... 20

Frequently Asked Questions 29
Glossary ... 31
For More Info ... 39
1 INTRODUCTION

Welcome to Spectral Machine!

Spectral Machine™ is an advanced frequency-domain multi-effects plug-in. Like SFX Machine, Spectral Machine wraps a great deal of power and flexibility inside an easy-to-use interface.

But unlike time-domain plug-ins like SFX Machine, Spectral Machine starts by converting the audio into the frequency domain using a Fast Fourier Transform (FFT). This gives us direct access to the signal’s frequency spectrum, enabling a number of effects that simply would not be possible in the time domain.

Spectral Machine effects include:

- Delay Spectral Bands
- Spectral Freeze
- Sample & Hold
- 3 AM
- 3-Band Filter
- Spectral Peak/Notch
- Oscillating Peak/Notch

plus the following effects that work with monophonic sources such as solo voice or a single-voiced instrument (such as saxophone, etc.):

- Pitch Shift
- Harmonize
- Pitch Quantizer
- Pitch Isolate
- Sine / Noise
- Spectral Shapeshifter
- Vibrato
- Robotization

Created with music and sound design professionals in mind, Spectral Machine makes it easy to select and modify effects with just a few mouse clicks.
Minimum System Requirements

The Macintosh version of Spectral Machine requires:

- A PPC or Intel Macintosh
- OS X 10.4 or higher
- About 100 MB available RAM (in addition to that required by your system, host software, etc.)
- About 100 MB available hard disk space
- A VST or Audio Unit host program

The Windows version of Spectral Machine requires:

- Windows XP, Vista, or 7
- About 100 MB available RAM (in addition to that required by your system, host software, etc.)
- About 100 MB available hard disk space
- A VST host program

For a list of suitable VST and Audio Unit host programs, see http://www.sfxmachine.com/spectralmachine/requirements.html.

Precautions

Use this sound design appliance only for its intended use as described in the manual. No user-serviceable parts inside. Opening the case can expose you to impedances in excess of 50,000 ohms. Do not use Spectral Machine while bathing. Never stick tongue to this appliance in subfreezing weather. Avoid bashing head repeatedly into Spectral Machine, smashing it into a million pieces, and welding the pieces to your body with a blowtorch.

Seriously, the main precaution here is: take care of your ears. If you blow out your speakers, you can buy new ones, but ears are not easy to repair or replace.

This applies to any audio software or hardware. In particular, use speakers instead of headphones if possible, and if you must use headphone, avoid prolonged use. Learn the signs of ear fatigue, and take a break when everything starts sounding the same. If your ears begin to ring, that's often a sign that you're listening to sounds that are too loud or listening for too long.
2 QUICK START

Installing Spectral Machine (Mac version)

To Install Spectral Machine for Macintosh:

2. In the Spectral Machine window, you will see an installer file, a Read Me file, and a user guide. The installer file is called "Spectral_Machine_1.0.mpkg".

3. Double-click on the "Spectral_Machine_1.0.mpkg" icon to launch the installer. The installer will take you through the remaining steps.

4. Read the Introduction, then click "Continue."

5. Read the Read Me file. Click "Continue."

6. Read the Software License Agreement. Click "Continue", then click "Agree" to accept the terms of the agreement.

7. Select a destination disk (you must choose your Mac OS X system disk) and click "Continue."

Note: If at this point you receive an error saying, "You are not allowed to install the software in the default location," that means one of two possible things: (1) You are not an administrator for that computer (in which case you need to ask an admin, most likely the owner of the computer, to install the software), or (2) if you are an administrator (which is most likely the case if you own the computer), then this means that your system has permissions errors. To correct them, launch Disk Utility (located in /Applications/Utilities), click on your system disk in the list on the left, click on the First Aid tab, and then click on Repair Disk Permissions.

8. Select the desired installation type, i.e., Easy Install.

9. Click "Close." You're done!
The installer will create two items:

- the Spectral Machine Audio Unit plug-in
 (placed into /Library/Audio/Plug-Ins/Components/)
- the Spectral Machine VST plug-in
 (placed into /Library/Audio/Plug-Ins/VST/)

The plug-ins should not be moved from their default locations.

Installing Spectral Machine (Windows version)

To Install Spectral Machine for Windows:

1. Double-click on the SFX_Machine_Pro_1.0.exe file. This will launch the installer.

2. Read the Introduction, then click "Next."

3. Read the Software License Agreement. Click "I accept the agreement" and then click "Next" to accept the terms of the agreement.

4. Locate the folder where you would like to install the VST plug-in. The proper location can vary depending upon the VST host application you are using, but usually the proper location is in a folder called VstPlugIns. Some hosts know to look in the "Program Files\VstPlugIns" folder, so that is the default location. Consult your VST host application's documentation to determine where you should install the plug-in file. Once you have selected a location, click "Next."

5. Next you will be presented with a summary of your installation options. Click "Install" to begin the installation.

6. The final screen will tell you whether or not the installation was successful and also give you the option to view the Read Me file. Click "Finish." You're done!
The installer will create two items:

- the Spectral Machine VST plug-in
 (placed in your VST host application’s VstPlugIns folder)
- a Read Me document
 (placed in the same location)

Authorizing Spectral Machine

This plug-in will operate in demo mode until it is authorized. In demo mode, the sound output will momentarily drop out every 30 seconds.

To authorize Spectral Machine:

1. Launch your VST or Audio Unit host application.
2. Select “Spectral Machine” from the appropriate menu or sub-menu (for example, “VST Plug-Ins”, or “Audio Unit Plug-Ins -> The Sound Guy”).
3. When Spectral Machine appears, you will be prompted to enter an authorization code.
4. After purchasing the software on-line, wait for an email from the payment processing company, share-it.com. Locate the 20-digit authorization code and copy it to the clipboard.
5. Paste this authorization code into the auth code prompt in Spectral Machine.

If you have encounter any problems in using Spectral Machine, check the Frequently Asked Questions section at the end of this manual, or check the FAQ page of our website.
3 **OVERVIEW**

User Interface

After instantiating Spectral Machine, you will see the user interface, which allows you to select and modify the factory effects and hear what they do to your audio.

To use Spectral Machine:

1. Select *General Purpose* or *Monophonic* effect type
 (For polyphonic sources, select *General Purpose*)
2. Select an effect from the *Effects* menu
3. Read the explanation and tips in the *Preset Description* field
4. Adjust any of the circular knobs, vertical sliders or buttons, or type the desired parameter value.
General Purpose and Monophonic Effects

There are two types of effects: General Purpose and Monophonic. General Purpose effects, as the name implies, can be used for any type of audio signal. While you may get more musical results by applying Spectral Machine to individual tracks or submixes (stems), rather than complete mixes, General Purpose effects can be applied to either.

Monophonic effects, on the other hand, should only be applied to monophonic tracks; that is, tracks containing a single monophonic source, such as solo voice, saxophone, etc. This is because Monophonic effects rely upon tracking the pitch of the input signal, and polyphonic sources have multiple pitches at once. So, unless you like the unpredictable and often unpleasant results, avoid processing polyphonic sounds with Monophonic effects.

“Monophonic” should not be confused with “monaural” (one channel). Monophonic refers to the number of sources, not the number of channels. A stereo recording of solo clarinet is monophonic. A one- or two-channel recording of a 6-string guitar or an 88-key piano is generally polyphonic.

Monophonic effects will most often be used on human voice, but they can also be applied to single-voiced orchestral instruments, etc. And recall that you can use any of the General Purpose effects with either monophonic or polyphonic sources – some General Purpose effects, such as Delay Spectral Bands, are very nice with vocals.
Spectral Machine Effect Controls

Each Spectral Machine effect has one to six vertical columns, each of which may have zero, one, or two controls: knobs, sliders, or push buttons.

Knobs

The circular knobs are used to control parameters such as:

- filter frequency (Hz)
- bandwidth (Hz)
- low–frequency oscillator (LFO) rate (Hz)
- decay amount (%)
- transposition amount (semitones)
- pitch correction (discretization) amount (semitones)
- voicing threshold (%)
- spectral shape shift amount (Hz)

The knobs are controlled using a linear motion, not a circular motion. Hold down the mouse button and drag it up or to the right to increase the value; drag down or to the left to decrease the value. Holding down the shift key lets you fine-tune parameter values.

You can also type the desired value into the value field immediately above the knob (e.g., 1000 in the illustration above).

Often frequency knobs are used to define crossover frequencies between bands for a multi–band effect. See 3–Band Filter or Delay Spectral Bands for examples of this.
Sliders

The vertical sliders are used to control parameters such as:

- gain (dB)
- modulation depth (%)
- decay time (seconds)
- hold time (milliseconds)
- delay time (milliseconds)
- voicing threshold (%)
- pitch correction rate (%)
- robotization pitch (%)

To get finer resolution, you can hold down the shift key while adjusting the sliders. You can also type the desired value into the value field immediately above the slider (e.g., 12 in the illustration above).

Push Buttons

Buttons are used to Fire and Reset the Spectral Freeze effect.
Spectral Machine Global Controls

The global controls (*Wet/Dry* and *Gain*) control whatever effect is currently selected.

Wet/Dry Slider

The *Wet/Dry* slider controls the proportions of the processed (“wet”) and unprocessed (“dry”) signals in the output.

Set *Wet/Dry* as follows:

1.0: Only the processed signal will be heard
0.5: 50/50 mix of processed and unprocessed
0.0: Only the unprocessed signal will be heard (same as bypass)

Note that some effects sound best with *Wet/Dry* set to 1.0 (100% wet), while others sound best with 0.5 (50% wet) or various intermediate settings. Also, some may sound best with just a slight amount of dry signal (e.g., 0.9); others may benefit from only a slight amount of processed signal (e.g., 0.1). Experiment to see what sounds best for your audio.
The *Gain* slider controls the amount of attenuation applied to the output. The *Gain* values are in decibels (dB). The highest gain is 0 dB (scaling the signal by 1.0 = no change); the lowest gain is –infinity (scaling the signal by 0.0 = no output).

Clip Light

If Spectral Machine detects clipping (which can cause harsh, distorted sounds), the Clip Light turns red. To keep this from happening, lower the *Gain* slider, or adjust other parameters that may be causing excessive gain. Click on the red Clip Light to reset the indicator.
4 **EFFECTS**

General Purpose Effects

Delay Spectral Bands

The **Delay Spectral Bands** effect lets you apply separate delays to three frequency bands; it also lets you control the amount of feedback for each band.

To use the Delay Spectral Bands effect:

1. Set the Low and High *Cutoff* frequencies (Hz) to split the spectrum into three bands

2. Set the desired *Delay* time (milliseconds) for each band. If you’re using feedback, you may want to start by setting all the bands to a longer *Delay* time, such as 1000 ms.
3. If you want feedback for one or more bands, specify the *Feedback* amount (%) by which that band should decay before feeding back.

You will generally want to set the *Wet/Dry* slider to 1.0 for this effect.
The **Spectral Freeze** effect lets you “freeze” the audio, with separate decay rates for the low and high frequencies. (You may want to use shorter decays at high frequencies, to match what happens with normal reverberation.)

To use the Spectral Freeze effect:

1. Set the *Cutoff* frequency (Hz) to separate the frequency spectrum into low and high bands. For each band,
2. Set the desired *Decay* time (seconds).
3. Click *Fire* to freeze the current instant of sound
4. Click *Fire* again if you want to freeze the sound from the new instant
5. Click *Reset* to stop the freeze effect

Experiment with different *Wet/Dry* slider settings for this effect, depending on whether you want to hear the unfrozen audio continuing behind the frozen audio.
Sample & Hold

The **Sample & Hold** effect is similar to the Freeze effect, but it automatically refires at the specified interval.

To use the Sample & Hold effect:

1. Set the desired *HoldTime* (milliseconds)

Experiment with the *Wet/Dry* slider settings for this effect – some nice results can be obtained by mixing in some dry sound.
The **3 AM** (3-band amplitude modulation) effect provides individual control of the amplitude modulation in 3 frequency bands for a multi-band tremolo effect.

To use the 3 AM effect:

1. Set the desired cutoff frequencies (Hz) to separate the frequency spectrum into bands. For each band,
2. Set the *LFO Rate* (modulation rate, in Hz), and
3. Set the LFO *Depth* (%)

You will generally want to set the *Wet/Dry* slider to 1.0 for this effect.
The **3–Band Filter** effect splits the audio into three bands and lets you adjust the gain of each band independently.

To use the 3–Band Filter effect:

1. Set the Low and High *Cutoff* frequencies (Hz) to separate the frequency spectrum into bands. For each band,
2. Set the desired *Gain* (dB).

You will generally want to set the *Wet/Dry* slider to 1.0 for this effect. If you boost one or more bands, you may want to reduce the output gain to avoid clipping.
The **Spectral Peak/Notch** effect lets you boost or attenuate an arbitrarily narrow frequency band around a specified frequency. For example, you could use this to notch out a 50 or 60 Hz electrical hum.

To use the Spectral Peak/Notch effect:

1. Set the desired center frequency \((CentFrq, \text{in Hz})\)
2. Set the desired \(\text{Bandwidth} \text{ (semitones)}\)
3. Set the desired band \(\text{Gain} \text{ (or attenuation) (dB)}\)

You will generally want to set the **Wet/Dry** slider to 1.0 for this effect. If you boost the band, you may want to reduce the output gain to avoid clipping.
Oscillating Peak/Notch

The Oscillating Peak/Notch effect is similar to the Peak/Notch effect, but with an oscillating center frequency.

To use the Oscillating Peak/Notch effect:

1. Set the desired center frequency (CentFrq) (Hz)
2. Set the desired Bandwidth (semitones)
3. Set the desired band Gain (or attenuation) (dB)
4. Set the modulation Rate (Hz)
5. Set the modulation Depth (%)

You will generally want to set the Wet/Dry slider to 1.0 for this effect.
Pitch Shift is a frequency-domain transposition effect with timbre preservation.

To use the Pitch Shift effect:

1. Set the desired transposition amount (semitones)

2. Adjust the Voice Threshold slider (%) to control how much pitch error is tolerated. Low values generally give better results, but hard-to-track signals will need higher values to avoid artifacts.

For the basic pitch shift effect, set the Wet/Dry slider to 1.0. If you also want to hear the original (dry) sound, lower the Wet/Dry slider to the desired amount.
Harmonize is a multiple transposition effect with timbre preservation (similar to Pitch Shift, but with additional bands).

To use the Harmonize effect:

1. Set the desired Pitch shift amounts (semitones). For each one,

2. Set the desired Gain (dB), and

3. Set a Delay (milliseconds), if desired.

To hear three different pitches at once, set the Wet/Dry slider to a desired value less than 1.0.
Pitch Quantizer nudge each note to the nearest semitone, for pitch correction or for an interesting artificial vocal effect.

To use the Pitch Quantizer effect:

1. Set the desired Correction amount (%) – this defines how much a note can move within the semitone range.

2. Set the desired Rate (%), to control how fast the pitch correction can occur.

For the pure Pitch Quantizer effect, set the Wet/Dry slider to 1.0. For an interesting artificial choral effect, set Wet/Dry to a lower value.
Pitch Isolate isolates the tonal sound from the rest of the sound (noise–like sounds and transients).

To use the Pitch Isolate effect:

1. Set the desired Voice Threshold slider (*Voice Thrld*) to control how much pitch error is tolerated.

In general, use low values for better quality; however, some hard-to-track signals may need higher thresholds to avoid artifacts.

For this effect, you will generally want to set the *Wet/Dry* slider to 1.0.
Sine/Noise gives you independent control over the sinusoidal (tonal/pitched) and residual (noise and transient) components of the sound.

To use the Sine/Noise effect:

1. Set the desired \textit{SinGain} amount to control the level of the sinusoidal components

2. Set the desired \textit{ResGain} amount to control the level of the residual (noise and transient) components

For this effect, you may want to set the \textit{Wet/Dry} slider to 1.0, or try different settings.
Spectral Shapeshifter lets you change the shape of vocal formants (spectral envelope) without affecting the pitch.

To use the Spectral Shapeshifter effect:

1. Set the desired Amount (Hz)

For this effect, you may want to experiment with different Wet/Dry slider settings.
Vibrato separates the sound into sinusoidal and residual components and modulates only the sinusoidal component.

To use the Vibrato effect:

1. Set the desired *LFO Rate* (Hz)
2. Set the desired modulation *Depth* (%)

For this effect, you may want to experiment with different *Wet/Dry* slider settings. A mix of Wet and Dry can give a pleasant vibrato/chorus effect.
Robotization changes the pitch to a fixed frequency for a robotic effect.

To use the Robotization effect:

1. Set the desired Pitch (Hz)

For this effect, you may want to experiment with different Wet/Dry slider settings. A mix of Wet and Dry can give a pleasant drone effect. You may want to set the Pitch to a suitable drone frequency, such as the key of the song or the frequency of the 5th, etc.
Loading a Preset

To load a Preset:
FREQUENTLY ASKED QUESTIONS

What keyboard shortcuts and little-known features I can use?

You can fine tune the slider and knob values by holding down the shift key while clicking on the body of the slider or knob.

Also, you can click on the body of the slider to make the indicator scroll instantly toward the mouse cursor.

How can I save and load presets?

To save a (modified) preset:

Most host applications include extra buttons and controls in every plug-in's window (or sometimes in the plug-in menu). You should see a button called "save" or "S", or maybe a menu called "file" or "presets" in which you'll find a menu item for saving a preset file. It varies from app to app, but it's generally similar in all cases.

After invoking that control, you should be greeted with a window asking for a file name and location for the preset file. Enter a name and location and press the "Save" button (or "OK" or whatever the window says). For maximum compatibility, save VST presets with a .fxp extension, and save Audio Unit presets with an .aupreset extension.

To load the preset you just saved:

Look for a control in the plugin window called "load" or "L" or something like that (depending on the host program).

After invoking that control, you should be greeted with a window asking you to find the location of the preset file that you would like to load. Find it and press the "Open" button (or "OK" or whatever it says).

To save a new bank of presets (VST only):

Look for a "save bank" control. (The name may vary from one app to another.)

After invoking that control, you should be greeted with a window asking for a file name and location for the preset bank file. Enter a name and location and press the "Save" button (or "OK" or whatever
the window says). For maximum compatibility, save VST presets with a .fxb extension.

To load the preset bank you just saved (VST only):

Look for a "load bank" control. (The name may vary from one app to another.)

After invoking that control, you should be greeted with a window asking you to find the location of the preset bank file that you would like to load. Find it and press the "Open" button (or "OK" or whatever it says).

Note that not all host programs support loading and saving of preset banks.

How can I automate parameter control using MIDI?

Your MIDI–capable host program or automation device should automatically expose the following controls:

- “Control 1–6” for the knob or push–button in the top row of Spectral Machine
- “Slider 1–6” for the sliders
- Wet/Dry
- Gain

The values that show up in the automation are always in the range of 0.0 to 1.0, which map to the real range of the control in the current preset. It is up to the host program to establish the mechanism for interpreting MIDI CC and updating the plug–in parameters. Please see your host program’s manual for specific details.

I lost my authorization code. How can I recover it?

Alternatively, you can always e–mail us at support@sfxmachine.com.
GLOSSARY

aliasing

A type of distortion caused by sampling at too low a sample rate. To avoid aliasing, the sample rate must be at least twice the highest frequency in the sound.

AM

See “Amplitude Modulation.”

amplitude

Amplitude refers to the relative height of a waveform. A sound’s loudness is a function of its amplitude.

Amplitude Modulation

A modulation method in which the amplitude of one wave (the “carrier”) is controlled by the amplitude of another wave (the “modulator”). Unlike Ring Modulation, Amplitude Modulation uses a modulator that is unipolar (i.e., always positive). In Spectral Machine, the AM modulator is automatically converted to a unipolar signal.

Low-frequency AM results in volume control or tremolo effects. Modulator frequencies that are themselves in the audio range result in sum and difference sideband tones that were not necessarily present in either the carrier or the modulator.

artifact

An unintended side effect of a technological process.

bandpass

A bandpass filter passes an area around the specified cutoff frequency and rolls off (attenuates) frequencies to either side.

carrier

An audio signal controlled by another signal (the “modulator”). The term is usually applied to AM and FM synthesis.

channel

An audio signal pathway. Spectral Machine uses a maximum of two channels, Left and Right.
clipping

An amplitude distortion that occurs when signal levels try to exceed the available amplitude range. The tops and bottoms of clipped waveforms are typically squared off, generating frequencies that weren’t in the original signal.

cutoff frequency

For lowpass and highpass filters, the cutoff frequency specifies the dividing line between frequencies that get passed by the filter and frequencies that get attenuated (rolled off). For bandpass filters, the cutoff specifies the center frequency of the band that gets passed.

cycle

One complete repetition or oscillation of a waveform. Frequencies are commonly measured in cycles per second.

dB (decibel)

A common unit for measuring audio levels. It uses a logarithmic scale, which roughly corresponds to how the ear hears differences in amplitude.

depth

See “modulation depth.”

DSP

Digital Signal Processing. Digital samples and analog voltages are both abstract representations of sound; digital signals are simply a different type of analogy, in which the signals are quantized both in time and amplitude and are represented by a series of numbers.

feedback

An effect that occurs when the output of a DSP process is fed back into the input. Interesting effects can result when you delay a signal, feed it through a non-linear process such as a filter or power distortion, and route it back to the input. See “feedback loop.”

feedback loop

The feedback loop is a central principle of cybernetics, from the flush toilet to the steam engine. Any system that functions by talking to itself incorporates a feedback loop.
Positive feedback loops result in a snowball effect, with the signal being re-amplified each time through. Negative feedback loops, such as thermostats, adjust themselves to achieve a self-regulating balance.

See “Ouroborus.”

field
See “value entry field.”

filter
A process that modifies a sound by passing some frequencies more readily than others, changing the spectral balance of the sound.

filter frequency
See “cutoff frequency.”

FM
See “Frequency Modulation.”

formant
A peak in the frequency response of a vocal tract or musical instrument. Different vowel sounds are characterized by the position and shape of their formants. The human vocal tract typically has five formant regions.

frequency
The repetition rate of a sound, typically measured in cycles per second. A sound’s pitch is related to its frequency.

Frequency Modulation
A modulation method in which the frequency of one wave (the “carrier”) is controlled by the amplitude of another wave (the “modulator”).

Low-frequency FM results in vibrato. Modulator frequencies that are themselves in the audio range result in the generation of sideband tones that are not necessarily present in either the carrier or the modulator.

harmonic
A single frequency component of a sound. Also called “overtone,” or
“partial.” The timbre, or tone color, of a sound may be characterized by its harmonic content. A 100 Hz sound that is high in harmonic content (for example, a sawtooth wave) will have harmonics at 200 Hz, 300 Hz, 400 Hz, etc.

Hertz (Hz)

Cycles per second. A 60–Hertz hum has 60 repetitions of its waveform every second.

highpass

A highpass filter passes the frequencies above the specified cutoff and rolls off (attenuates) the lower frequencies.

host program

The host program is the program that Spectral Machine plugs into; for example, Cubase or Peak.

inharmonic

Frequency components are said to be inharmonic if they occur at frequencies that are not integer multiples of the fundamental, or base frequency.

Stretched strings, notably piano strings, produce sounds that are slightly inharmonic because the higher partials are somewhat sharp. FM and other techniques can produce extremely inharmonic sounds.

LFO

A Low-Frequency Oscillator, generally used for adding vibrato or tremolo or otherwise controlling an audio signal. “Low-frequency” implies frequencies below the audio range (20 Hz — 20 kHz), i.e., frequencies low enough that they aren’t heard as a tone.

lowpass

A lowpass filter passes the frequencies below the specified cutoff and rolls off (attenuates) the higher frequencies.

modulation

The control of some aspect of a signal, for example its amplitude or frequency, by another signal.

modulation amplitude

The percentage by which a signal is scaled before it is used to
modulate another signal. If the modulation amplitude is 100%, the modulating signal is unchanged; its full range is used to control the destination signal. Also called “modulation depth.” Increasing the modulation depth will cause a “deeper” vibrato, tremolo, etc.

modulation depth

See “modulation amplitude.”

modulator

A signal that modulates or controls another signal (the “carrier”).

monaural (mono)

A sound with only one channel, as opposed to “stereo.”

Pressing the Mono Preview button will cause Spectral Machine to preview a stereo sound using only the left channel.

monophonic

A single melodic line without accompaniment; for example, solo voice. Spectral Machine’s monophonic effects should only be used with solo voice or solo instruments – they will not sound good with polyphonic instruments (piano) or mixes.

noise

1. A complex sound made up of a broad spectrum of non-harmonically-related frequencies.

2. Any euphony-impaired sound, often arbitrarily discriminated against on aesthetic grounds.

oscillator

A signal source that produces a specified waveform at a specified frequency.

Ouroborus

Jungian archetype symbolizing feedback. Originally appeared in Egyptian art of a snake consuming its own tail; more recently reflected in Apple Computer’s street address, 1 Infinite Loop.

See “feedback.”

parameter

A numerical value used to control some aspect of a Spectral
Machine effect.

pitch
A psychoacoustic phenomenon that is closely related to but not synonymous with frequency. Pitch is the subjective property that lets us compare whether one sound seems “higher” or “lower” than another.

The pitch of a sound can be ambiguous or ill-defined. What is the pitch of a chord, a click, white noise or silence?

polyphonic
Music in which several melodic voices are playing at once.

Q
A parameter that controls a filter’s roll-off slope and the (inverse) width of its resonant peak.

For a bandpass filter, the Q is the ratio of the filter’s center frequency to its bandwidth. For example, if the filter’s cutoff frequency is 500 Hz and its bandwidth is 50 Hz, its Q is 10.

quantization
The process of limiting a value to one of a discrete number of values; for example, representing an audio sample as a 16-bit integer. Sampling also involves quantizing time, by sampling at discrete intervals.

resonance
A spectral peak in the response of a filter, the body of a musical instrument, etc. If an external disturbance (for example, an earthquake) happens to match the resonant frequency of an object (for example, a house), the resulting vibration can be greatly amplified.

sample
A number representing the amplitude of a signal at a given instant in time.

sample–and–hold
A sample–and–hold samples a signal at a specified time interval. It holds the output at that level until the end of the hold time and then
grabs another sample. This process is also called “downsampling.”

sample rate

Sample rate describes how frequently an analog audio signal is sampled as it is converted into a series of numbers.

44.1 kHz is the standard sample rate for compact disks; 48 kHz is often used with digital audio tape (DAT) recording; 22.050 kHz is frequently used for games and multimedia.

A higher sample rate allows a higher frequency response. In order to accurately reconstruct a sound, the sample rate must be at least twice the highest frequency in the sound.

sampling

Sampling, or analog–to–digital conversion, is the process of converting an analog signal to a series of digital samples (numbers).

selection

The original audio source signal that is selected in the host application before invoking Spectral Machine. Various host programs may refer to a selection as a region, a track, a clip, etc.

semitone

The interval between two adjacent notes on a piano keyboard. One semitone equals 100 cents.

sideband

An additional frequency produced as a result of a modulation. AM, FM and Ring Modulation can all generate sidebands that are not necessarily present in either of the original signals.

signal

A symbolic representation of a sound; an electrical current or series of numbers used to signify acoustic vibrations. “Signal” can also refer to “control voltages” or modulations, electronic messages that may or may not themselves be audible.

The beauty of modular synthesis is the way that sounds and modulations can both be expressed as signals and can, therefore, be used interchangeably, modulating things they have no business modulating.
signal-to-noise ratio
A measurement of the amplitude of the desired sound as compared to the background noise level.

sine wave
A smooth waveform whose spectrum consists of a single frequency. A sine wave has a pure flute-like tone.

spectrum
By analogy with the example of light, which can be split into its constituent colors, an audio spectrum is the representation of a sound’s harmonic content in terms of its component frequencies.

stereo
Stereophonic; having two audio channels.

timbre
A sound’s tone color, which is a function of its harmonic content.

tremolo
A low-frequency variation in a sound’s amplitude envelope.

value entry field
A box that allows you to enter a numerical value. In Spectral Machine, all values may be entered as floating point numbers, though the decimal point is not required. Also referred to as a “text edit field.”

vibrato
A low-frequency variation in a sound’s frequency envelope.

white noise
By analogy with white light (composed of equal amounts of all visible light frequencies), white noise is a sound composed of an equal mix of all audible frequencies.
For More Info

For the latest information about Spectral Machine, go to http://www.sfxmachine.com/spectralmachine.

For technical support, e-mail support@sfxmachine.com. We aim to provide insanely great tech support; please do your part by reading the friendly manual.

We want to turn our customers into fans. Let us know what we need to do to make that happen. Your comments and suggestions are greatly appreciated.

If you love Spectral Machine, please tell your audio friends! If you don’t, tell us what we can do to improve it.

All features and specifications subject to change.

Spectral Machine™ is a trademark of The Sound Guy.

All other trademarks are the property of their respective holders.
Spectral Machine License Agreement

This legal document is an agreement between you, the end user, and The Sound Guy, Inc. (hereinafter "THE SOUND GUY"). BY INSTALLING OR UTILIZING THIS SOFTWARE, YOU ARE AGREEING TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT, WHICH INCLUDES THE SOFTWARE LICENSE AND THE SOFTWARE DISCLAIMER OF WARRANTY (collectively the "Agreement"). THIS AGREEMENT CONSTITUTES THE COMPLETE AGREEMENT BETWEEN YOU AND THE SOUND GUY. IF YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT INSTALL OR USE THIS SOFTWARE.

SOFTWARE LICENSE

1. GRANT OF LICENSE. In consideration of payment of the LICENSE fee, which is a part of the price you paid for this product, THE SOUND GUY, as Licensor, grants to you, the LICENSEE, a non-exclusive right to install and use up to two copies of this THE SOUND GUY software (hereinafter the "SOFTWARE") on computers at your premises. THE SOUND GUY reserves all rights not expressly granted to LICENSEE.

2. OWNERSHIP OF SOFTWARE. As the LICENSEE, you own the magnetic or other physical media onto which the SOFTWARE is copied, recorded or fixed. THE SOUND GUY retains title and ownership of the original SOFTWARE and all subsequent copies of the SOFTWARE, regardless of the form or media on which the original and other copies may exist. This License is not a sale of the original SOFTWARE or any copy.

3. COPY RESTRICTIONS. This SOFTWARE and the accompanying written materials are copyrighted. Unauthorized copying of the SOFTWARE, including SOFTWARE that has been modified, merged, or included with other software, or of the written materials is expressly forbidden. You may be held legally responsible for any copyright infringement that is caused or encouraged by your failure to abide by the terms of this License.

4. USE RESTRICTIONS. As the LICENSEE, you may physically transfer the SOFTWARE from one computer to another provided that the SOFTWARE is used on only one computer at a time. You may not modify, adapt, translate, reverse engineer, decompile, disassemble, or create derivative works based on the SOFTWARE. You may not modify, adapt, translate, or create derivative works based on the written materials without the prior written consent of the author. You may not attempt to defeat the copy protection, nor may you distribute the SOFTWARE's passwords or serial numbers to others. As LICENSEE, you agree that this product is not intended for use in live performance.

5. TRANSFER RESTRICTIONS. This SOFTWARE is licensed only to you, the LICENSEE, and may not be transferred to anyone without the prior written consent of THE SOUND GUY. Any authorized transferee of the SOFTWARE shall be bound by the terms and conditions of this Agreement. In no event may you transfer, assign, rent, lease, sell, or otherwise dispose of the SOFTWARE on a temporary or permanent basis except as expressly provided herein.

6. EXPORT RESTRICTIONS. You acknowledge that the SOFTWARE is subject to U.S. export jurisdiction. You agree to comply with all applicable international and national laws that apply to the SOFTWARE, including the U.S. Export Administration Act and the Export Administration Regulations, as well as end-use, end-user and country destination restrictions issued by U.S. and other governments. You agree and certify that you are not a citizen or permanent resident of the following countries: Cuba, Iran, Iraq, North Korea, Libya, Sudan or Syria.

7. TERMINATION. This License is effective until terminated. This license will terminate automatically without notice from THE SOUND GUY if you fail to comply with any provision of this License. Upon termination you shall destroy the written materials and all copies of the SOFTWARE, including modified copies, if any.
8. UPDATE POLICY. THE SOUND GUY may publish, from time to time, updated versions of the SOFTWARE. At its option, THE SOUND GUY may make such updates available to the LICENSEE.

9. MISCELLANEOUS. This Agreement is governed by the law of the State of California.

DISCLAIMER OF WARRANTY AND LIMITED WARRANTY

To the maximum extent permitted by applicable law, THE SOUND GUY and its suppliers provide the SOFTWARE and accompanying written materials AS IS AND WITH ALL FAULTS, and hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, of freedom from bugs, and of lack of negligence, all with regard to the SOFTWARE, and the provision of or failure to provide support services. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE SOFTWARE. THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF THE SOFTWARE IS ASSUMED BY YOU, AND NOT THE SOUND GUY OR ITS DEALERS, DISTRIBUTORS, AGENTS, OR EMPLOYEES. YOU AGREE TO ASSUME THE ENTIRE COST AND LIABILITIES ASSOCIATED WITH ITS USE.

THE SOUND GUY hereby limits the duration of any implied warranty(ies) to a period of ninety (90) days from the date of delivery. Some states do not allow limitations on duration of an implied warranty, so the above limitation may not apply to you.

THE ABOVE ARE THE ONLY WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, THAT ARE MADE BY THE SOUND GUY CONCERNING THE SOUND GUY PRODUCT. NO ORAL OR WRITTEN INFORMATION OR ADVICE GIVEN BY THE SOUND GUY, ITS DEALERS, DISTRIBUTORS, AGENTS, OR EMPLOYEES SHALL CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY, AND YOU MAY NOT RELY ON ANY SUCH INFORMATION OR ADVICE. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL THE SOUND GUY OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY, FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE THE SOFTWARE, THE PROVISION OF OR FAILURE TO PROVIDE SUPPORT SERVICES, OR OTHERWISE UNDER OR IN CONNECTION WITH ANY PROVISION OF THIS AGREEMENT, EVEN IF THE SOUND GUY OR ANY OTHER PARTY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you might incur for any reason whatsoever (including, without limitation, all damages referenced above and all direct or general damages), the entire liability of THE SOUND GUY and any of its suppliers under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be, at THE SOUND GUY's option, either (a) return of the purchase price or (b) the right to re-download the software. The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails its essential purpose.

This Disclaimer of Warranty and Limited Warranty is governed by the laws of the State of California.
U.S. GOVERNMENT RESTRICTED RIGHTS

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subdivision (b)(3)(ii) of The Rights in Technical Data and Computer Software clause at 252.227–7013. Contractor/manufacturer is The Sound Guy, Inc.

Should you have any questions concerning this Agreement, or if you desire to contact The Sound Guy, Inc. for any reason, please e-mail sfx@sfxmachine.com.
The Sound Guy, Inc.
12510 Paseo Cerro,
Saratoga, CA 95070 U.S.A.
E-mail: sfx@sfxmachine.com
Web Site: http://www.sfxmachine.com

SFX Machine™, SFX Machine RT™, SFX Machine Pro™, and Spectral Machine™ are trademarks of The Sound Guy, Inc. All Rights Reserved.

Apple, Mac, Macintosh, and Audio Unit are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

VST is a trademark of Steinberg Soft– und Hardware GmbH.

Other company and product names are trademarks or registered trademarks of their respective holders and should be treated as such.